ALGEBRA II QUALIFYING EXAM

AUGUST 2022

The exam will last 2 hours. You will be graded on 4 out of the 5 questions. If you submit solutions to more than 4, you must state which question you choose for me to ignore on the first page of your solutions.

- (1) Let $F = \mathbb{Q}(\sqrt[4]{3}, i)$.
 - (a) Identify isomorphism class of the Galois group G of F/\mathbb{Q} in terms of the classification of small groups.
 - (b) Find all intermediate fields $F/K/\mathbb{Q}$ with $[K:\mathbb{Q}] = 2$.
- (2) Let F be a field of characteristic p > 0, such that f(X) = X^p X + a ∈ F[X] does not have a root in F. Show that f(X) is irreducible, and that the Galois group of f is cyclic of order p. *Hint:* if α is a root of f in an extension of F, show that α + 1 is also a root of f.
- (3) (a) Show that if M and N are projective R-modules, then M ⊗_R N is projective.
 (b) Show that if M and N are injective Z-modules then M ⊗_Z N is injective. Hint: This does not hold if Z were replaced by a general ring R.
- (4) Show that $\operatorname{Tor}_{i}^{\mathbb{Z}/p^{3}\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/p^{2}\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ for all $i \geq 0$.
- (5) There is a group of order 24 called $SL_2(\mathbb{F}_3)$. The table below contains the sizes of the conjugacy classes of $SL_2(\mathbb{F}_3)$, and two of its irreducible complex characters. Use these characters to compute the entire complex character table of $SL_2(\mathbb{F}_3)$.

ccl(g)	1	1	6	4	4	4	4
$\chi_2(g)$	1	1	1	ξ	ξ^2	ξ^2	ξ
$\chi_4(g)$	2	-2	0	-1	-1	1	1

Here ξ is a primitive cube root of unity.